
Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application

This paper describes a Mac OS 8 Compatible Application.

Note: This is an evolving document which will be revised based on
developer feedback.

1.0 Definition

A Mac OS 8 Compatible Application is an application that can run well on
both System 7.x and Mac OS 8. It only uses features documented in Inside
Macintosh. It is possible to write a Mac OS 8 Compatible Application on
System 7.x today — and many System 7.x Applications are Mac OS 8
Compatible today!

1.1 Summary of Guidelines

In order to be classified as a Maxwell Compatible Application, the
following guidelines apply:

Unsupported in
Mac OS 8:

1. Don’t use ASLM

2. Don’t access the trap table directly

3. Don’t use jGNEFilter to intercepts events globally.

4. Don’t call PPostEvent

5. Don’t call GetEvQHdr

6. Don’t access private traps or private LowMem

7. Don’t use PrivateInterfaceLib

8. Don’t rely on FileSystem hooks or patches

9. Don’t use Compressed Resources

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

10. Don’t call InitResources, RsrcZoneInit, RsrcMapEntry

11. Don’t use resource file refNums with File Mgr calls

12. Don’t call SetApplLimit

13. Don’t call Virtual Memory calls

14. Don’t assume relationships between the application stack and heap

15. Don’t allocate all of Temporary Memory

16. Don’t allocate all hard drive space

17. Don’t share data structures between applications

18. Don’t hard-code Font usage

19. Don’t write to your applications data-fork

20. Don’t access hardware directly

21. Don’t assume the system state in Notification Mgr routines

22. Don’t change the Window List directly

23. Don’t set the Global-Share bit in a CFM Library that contains code

24. Don’t rely on the structure of system memory

25. Don’t require AOCE interfaces.

26. Don’t require an INIT, Control Panel or Desk Accessory

27. Don’t use the Dictionary Manager

28. Don't depend on Script Manager internals

29. Don’t poll for Open Transport asynchronous events

30. Don't pass open file reference numbers between processes

31. Don't assume all FCB and VCB fields are valid

32. Don't modify FCB or VCB data structures.

33. Don't call GetDrvQHdr or AddDrive

Discouraged in
Mac OS 8:

1. Don’t draw directly to the screen

2. Don’t patch within an application

3. Don’t access memory in other applications

4. Don’t access low memory directly

5. Don’t use a custom MBDF

6. Don’t patch toolbox definition procedures(WDEF, MDEF, etc.)

7. Don’t rely on pairing of suspend & resume events

8. Don’t assume that current process and front process are the same when
launching

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

9. Don’t use TopMapHndl and SysMapHndl lowmems

10. Don’t use vCheckLoad

11. Don’t use ROMBase to test your environment

12. Don't use obsolete names for Text Utilities

13. Don't use negative selectors for GetScriptVariable()

14. Don't assume the system script is the same in all processes

15. Don't assume resource and file reference numbers are interchangeable

16. Don't use working directories

17. Avoid registering Gestalt selectors based on selector functions

18. Make no assumptions about resource ordering using index calls

19. Make no assumptions about editing behavior of resource file

20. Don’t rely on Memory Manager implementation

Well-behaved in
Mac OS 8:

1. PowerPC native implementations

2. Use GX printing

3. Use OpenTransport networking

4. Use Lowmem accessors

5. Use the latest universal interfaces

6. Support only System 7 and later.

7. Minimize patching

8. Factor your application

9. Use standard definition procedures

10. Be VM friendly

11. Locate special folders using Folder Mgr

12. Specify stack size in code fragment resource

13. Be WorldScript aware

14. Be Inline-Input aware

1.2 Unsupported in Mac OS 8

This section details features that are not supported in Mac OS 8 and
identifies alternative solutions that are supported.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.2.1 Don’t use ASLM

The Apple Shared Library Manager is not available under Mac OS 8.
Applications that rely on ASLM as a shared library mechanism or to
maintain plug-ins will need to be redesigned. Mac OS 8 supports two
shared library mechanisms: SOM for object-oriented libraries and the Code
Fragment Manager for procedural libraries.

1.2.2 Don’t access the trap table directly

Don’t make assumptions about the implementation of the trap table. The
location, size and nature of the trap table are all private. Execution of the
entries in the trap table is only supported through A-Traps (68k system
calls) or through NGetTrapAddress. Applications which circumvent
the APIs will break under Mac OS 8. Modification of trap table entries is
only supported via NSetTrapAddress.

1.2.3 Don’t use jGNEFilter to intercept events globally.

Mac OS 8 supports the jGNEFilter mechanism in a limited fashion. The
jGNEFilter proc will be called for all events intended for the installing
application only; events targeted at other applications will not be available
to a jGNEFilter proc.

1.2.4 Don’t call PPostEvent

PPostEvent is used in System 7.x to post fake mouse and keyboard
events. In Mac OS 8, PPostEvent does not allow events to be posted
from one application to another. If you need to post application-defined
events, use Apple Events to send a mouse or keyboard event.

1.2.5 Don’t call GetEvQHdr

GetEvQHdr points to a list which is always empty on Mac OS 8. Again,
events are maintained on a per-application basis so most uses of this call
are invalid on Mac OS 8.

1.2.6 Don’t access private traps or private LowMem

All private traps have been removed from the Mac OS 8 trap table. System
software uses CFM binding to get to system services. Any applications that
call private traps directly or indirectly (via GetTrapAddress &
CallUniversalProc) will break under Mac OS 8. Specifically, native
applications which have their own glue code to get to system calls
unavailable on System 7.x will break.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.2.7 Don’t use PrivateInterfaceLib

Under Mac OS 8, PrivateInterfaceLib no longer exists. Therefore,
applications that link against or dynamically load PrivateInterfaceLib will
not work.

1.2.8 Don’t rely on FileSystem hooks or patches

The System 7.x hooks: ExtFSHook and FSQueueHook are not
supported under Mac OS 8. In addition, patching the file system will have
the same limitations as JGNEFilter (see 1.2.3, above) -- the effect of the
patching is per-application, not system-global.

1.2.9 Don’t use compressed resources

Compressed resources are not supported in Mac OS 8. Compressed
resources are a system-private mechanism of System 7. Your application
should not contain any compressed resources or be built with development
tools which produce compressed resources.

1.2.10 Don’t call InitResources, RsrcZoneInit, RsrcMapEntry

Both InitResources and RsrcZoneInit are now obsolete. In the past, these
functions where called by system software to setup the application
resource environment on behalf of the application. They are no longer
called by system software and are no longer supported.

In the past RsrcMapEntry was used to read resource manager data directly
from the resource map. In order to use this call properly, the caller
uses explicit knowledge of the layout of resource map entries within the
resource map. In Mac OS 8, the in-memory resource map is not present
and this call is not supported.

1.2.11 Don’t use resource file refNums with File Mgr calls

In the past, the resource manager used the file manager to open, read,
write and close the resource fork. The refNum obtained from the file
manager was used to represent the resource manager refNum for an open
resource fork. This enabled the callers of the resource manager to use
the refNum obtained from the resource manager to call the File Manager.
In Mac OS 8, the resource manager no longer uses the file manager to
open, read, write and close resource forks and thus, the refNum returned by
the resource manager is in no way related to File Manager refNums.
Callers of the Resource Manager can no longer call the File Manager using
refNums obtained from the Resource Manager.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.2.12 Don’t call SetApplLimit

In the past, a relationship existed between an application stack and
the application heap. This relationship allowed for the shrinking or
growing of the application stack by calling SetApplLimit. In Mac OS 8,
the relationship between stack and application heap no longer exists.
Using SetApplLimit to adjust an application's stack is no longer
supported in Mac0S 8. Use the code fragment resource instead (see section
1.4.12).

1.2.13 Don’t call Virtual Memory calls

With the new MicroKernel architecture introduced with Mac OS 8, the
System 7.X virtual memory calls are no longer supported.

1.2.14 Don’t assume any relationship between application stack and
heap

See "Don’t call SetApplLimit", section 1.2.12.

1.2.15 Don’t allocate all of Temporary Memory

Mac OS 8 has a virtual memory subsystem which can allocate address
space on demand. The amount of this address space is limited only by the
amount of disk space available on the system. Allocate only the amount of
memory that you can use, do not allocate all that is available.

1.2.16 Don’t allocate all hard drive space.

Since the virtual memory system uses the disks to "back" memory,
allocating all hard disk space on the system will inevitably lead to running
out of memory.

1.2.17 Don’t share data structures between applications

Although applications still run in the same address space, system services
(like the Window Manager and Event Mgr) maintain structures on a per-
application basis. For this reason, creating a data structure in one
application (i.e. a menu) and attaching it to a data structure in another
application (i.e. a menubar in another app) will not work under Mac OS 8.

1.2.18 Don’t hard-code Font usage

Mac OS 8 allows for customization of the appearance of the system. One
of the settings that users are allowed to customize is the default system and

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

application fonts. Applications should use the calls GetSysFont and
GetAppFont instead of hard-coding (e.g. Chicago 12).

1.2.19 Don’t write to your applications data-fork

Writing to your applications data-fork while the application is running will
result in a file system permission error. Under Mac OS 8, all application
data-forks will be file-mapped read-only with exclusive access.
Applications should store personalized information (i.e. name, serial
number, etc.) into a preference file.

1.2.20 Don’t access hardware directly

Under Mac OS 8, hardware will not be directly accessible (i.e. it will not be
mapped into the address space in which an application runs). This
limitation greatly improves system stability. Similar functionality will be
available by interactions with drivers and I/O calls.

1.2.21 Don’t assume the system state in Notification Mgr routines

Under Mac OS 8, a notification manager completion routine will be called
at different times than on System 7.x. Making assumptions around how and
when the routine will get called (i.e. the frontmost app) will generally not
be valid.

1.2.22 Don’t change the Window List directly

Under Mac OS 8, the Window Manager maintains the system window list
separately from the nextWindow field. Changing this field directly will
not have the desired effect. Use the routines BringToFront and
SendBehind instead.

1.2.23 Don’t use Global-Share bit in a CFM Library containing code

Linking against per-context libraries in a globally-shared library that
contains code will not work in a per-context fashion. If you need to
maintain system-wide global data, you should use a separate library that
only contains data and doesn’t link against other libraries.

Note: The global share bit is accessible in Metrowerks CodeWarrior from
the “share data section” checkbox in the PPC Pef preferences pane, and
from the -s option in the MakePef MPW tool.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.2.24 Don’t rely on the structure of system memory

In Mac OS 8, the structure or layout of system memory is not the same as
in System 7.x. In general, addressing arithmetic based on System 7.x
memory structures will not work as desired. The location (address) and
relationship of application heaps, code, static data and stacks have
changed. For example, do not assume that your native code is in your
application heap.

1.2.25 Don’t require AOCE interfaces.

Not all currently available AOCE interfaces may be available on Mac OS 8.
If your application uses AOCE, use Gestalt to check for the availability of
AOCE features AND weak-link against the AOCE library.

1.2.26 Don’t require an INIT, Control Panel or Desk Accessory

INITs, Control Panels and Desk Accessories are not supported under
Mac OS 8. If your application is packaged up as one of these, you must
rewrite your application. If you rely on one of these for functionality, be
prepared to fail gracefully when they are not present.

1.2.27 Don’t use the Dictionary Manager

The Dictionary Manager, described in Inside Macintosh: Text chapter 8, is
not supported in Mac OS 8.

1.2.28 Don't depend on Script Manager internals

Some applications take advantage of knowledge of the script manager's
internal data structures. These will be completely different in Mac OS 8.
The private low-memory locations that provided access to these structures
are unsupported in Mac OS 8.

1.2.29 Don’t poll for Open Transport asynchronous events

If using Open Transport and asynchronous events, endpoint providers are
discouraged from polling for these events. Polling will have adverse effects
under Mac OS 8. Use a notifier function in responding to asynchronous
events instead.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.2.30 Don't pass open file reference numbers between processes

Mac OS 8 maintains the System 7 compatibility FCB list on a per-process
basis. This means that open file reference numbers have meaning only
within the process which opened the file. Use file specifications or aliases
instead.

1.2.31 Don't assume all FCB and VCB fields are valid

Only a subset of the FCB and VCB fields are valid in Mac OS 8. The
following FCB fields are valid: fcbFlNum, fcbFlags, fcbEOF,
fcbPLen, fcbCrPs, fcbVPtr, fcbClmpSize, fcbFType,
fcbDirID, and fcbCName. The following VCB fields are valid:
vcbSigWord, vcbVRefNum, vcbCrDate, vcbLsMod,
vcbVolBkUp, vcbAtrb, vcbClpSiz, vcbNmAlBlks,
vcbAlBlkSiz, vcbFreeBks, vcbVN, vcbDrvNum,
vcbDRefNum, vcbNmFls, vcbNmRtDirs, vcbFilCnt,
vcbDirCnt, and vcbFndrInfo.

1.2.32 Don't modify FCB or VCB data structures

The FCB and VCB data structures are maintained for compatibility reasons
only. They should be considered as read-only entities. Note that directly
accessing FCB and VCB data structures is discouraged in Mac OS 8.

1.2.33 Don't call GetDrvQHdr or AddDrive

GetDrvQHdr points to a list which is always empty on Mac OS 8.
Consequently, AddDrive is not supported. Use explicit File Manager calls
to determine information about the volume list.

1.3 Discouraged in Mac OS 8

This section details features that are discouraged in Mac OS 8 and
identifies alternative solutions that are supported. These features are very
likely to be unsupported in future versions of the Mac OS.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.3.1 Don’t draw directly to the screen

Applications that write directly to the base address of the screen will
continue to work under Mac OS 8. However, bypassing the system
graphics systems prevents this type of application from being able to take
advantage of video acceleration.

 Note: As before, ShieldCursor and ShowCursor should be used to ensure
that the cursor isn’t overwritten in the frame buffer.

1.3.2 Don’t patch within an application

Although global patching isn’t supported, patching within an application is
still allowed. SetTrapAddress is supported for compatibility. However,
you should try to minimize your use of patching, since it lowers your
applications performance, lowers overall system reliability and introduces
compatibility risks.

1.3.3 Don’t access memory in other applications

Some applications may pass pointers to data to each other through Apple
events, Gestalt routines, or other means. This mechanism will break in
future system software releases when each application runs in its own
protected address space. However, since under Mac OS 8 all applications
(not servers or drivers) run in the same address space, sharing data across
applications is discouraged but allowed.

Furthermore, Mac OS 8 supports several alternatives for sharing which will
continue to work when we transition to protected address spaces for
applications (i.e. AppleEvents, kernel messaging, shared memory, etc.).

1.3.4 Don’t access low memory directly

Under Mac OS 8 the LMSet/LMGet calls still change low-memory
locations, so writing and reading directly from low memory is still
technically supported. However, direct access will stop working in future
releases of Mac OS that run applications in separate address spaces.

1.3.5 Don’t use a Custom MBDF

Under Mac OS 8, custom menu bar definition procedures (MBDF) are
supported only to a limited extent. The current user selectable theme
maintains control of the menubar and its appearance. Custom MBDFs only
get called to process requests not related to drawing operations.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.3.6 Don’t patch toolbox definition procedures

Definition procedures will continue to follow the same definition procedure
message protocol that they did in System 7.x so that handlers installed to
customize particular behaviors (e.g. wDraw for WDEFs) will continue to
function. However, this practice is discouraged because any drawing
operations will not be visually compatible with the currently selected
theme.

1.3.7 Don’t rely on pairing of suspend & resume events

Some applications assume that suspend and resume events are always
paired so that they don’t have to examine the event to determine which of
the two was sent (they just toggle a boolean to differentiate the state).
Generally, this will continue to work in Mac OS 8, but is somewhat
problematic when another application unexpectedly terminates. When this
happens, the "toggle" assumption is invalid.

1.3.8 Don’t assume that current process and front process are the
same when launching

Some applications assume that they are always launched into the
foreground. This is an invalid assumption because the current foreground
application must process its suspend event before this is true.

1.3.9 Don’t use TopMapHndl and SysMapHndl lowmems

Both TopMapHndl and SysMapHndl require the caller to have knowledge
of the in-memory Resource Map data structure. Using any knowledge of
Resource Manager internals is discouraged in Mac OS 8. Future releases of
the Mac OS may not support TopMapHndl and SysMapHndl.

1.3.10 Don’t use vCheckLoad

The vCheckLoad vector is a private Resource Manager hook that has
been reverse-engineered by the developer community. With past versions
of the OS, it has been maintained to avoid breaking application
compatibility. With Mac OS 8, it is still being maintained at a high cost to
runtime performance. Future releases of the Mac OS will not support
vCheckLoad.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.3.11 Don’t use ROMBase to test your environment

Some applications test ROMBase (and information found by dereferencing
ROMBase) to verify that they are running on a system release which
supports their minimum features. Use Gestalt instead.

1.3.12 Don't use obsolete names for Text Utilities

The obsolete names and their replacements are documented in Inside
Macintosh: Text, Appendix D.

1.3.13 Don't use negative selectors for GetScriptVariable().

These negative verbs provide access to the so-called "developer routines."
While they will continue to be supported in Mac OS 8, we encourage
application developers to use Quickdraw GX instead, which removes the
need to use these routines.

1.3.14 Don't assume the system script is the same in all processes.

Mac OS 8 makes it possible to correctly run applications with a different
localization than the workspace or other applications. This means that
many Script Manager variables will vary from process to process. Be sure
you always check these values for the current process before using them. It
also means that changes made to a Script Manager variable may only affect
the process that the change was made in.

1.3.15 Don't assume resource and file reference numbers are
interchangeable

Use the Resource Manager calls wherever possible. Do not assume that an
open resource file reference number is, in fact, an open file reference
number. They are no longer interchangeable.

1.3.16 Don't use working directories

The Mac OS 8 FSSpec to FSObjectRef translation facilities cannot use
working directories. Use FSMakeFSSpec to create file specifications.

1.3.17 Avoid registering Gestalt selectors based on selector

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

functions

Mac OS 8's multiple address spaces make exposed addresses that might be
referenced from other processes dangerous. Instead of registering
selector function (procptr) based Gestalt selectors, use value-based
selectors whenever possible. Use NewGestaltValue,
SetGestaltValue, and ReplaceGestaltValue when they are
available instead of NewGestalt and ReplaceGestalt.

1.3.18 Make no assumptions about resource ordering using index calls

The ordering of the resources as returned from the index-based Resource
Mgr calls is not guaranteed to persist. The order will remain fixed so long
as the resource file is opened and the file is not edited. Once the file is
closed, the ordering of the resource returned upon the following open is not
guaranteed to be the same. The System 7.X ordering of resources is
currently being maintained by Mac OS 8 for application compatibility at
high run time cost. This support will be removed in future releases of the
Mac OS.

1.3.19 Make no assumptions about editing behavior of resource file

Due to resource file format limitations, the Resource Manager is limited in
both the number and size of resources in a resource file. Some applications,
having hit these limits, used knowledge of the editing behavior of the
Resource Manager to increase the number and/or the size of resources in a
single resource file. In Mac OS 8, changes to the algorithms used when
editing a resource file will break applications that rely on some of the
behaviors of the past.

1.3.20 Don’t rely on Memory Manager implementation

The reliance on the Memory Manager implementation comes in several
forms. Don't rely on the layout of block headers including the layout of the
headers individual fields. Don't use knowledge of the space overhead of
Memory Manager private data structures including heap headers and block
headers. Don't use knowledge of Memory Manager allocation behavior to
predict memory use and/or memory layout of future allocations.

In general, the block headers, zone headers and size overhead of zones are
private to the implementation of the Memory Manager. Applications which
depend upon these data structures prevent Apple from improving the
performance and stability of the Memory Manager.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.4 Well-Behaved in Mac OS 8

This section details features that are well-behaved in Mac OS 8. These
features are likely to work compatibly in future versions of the Mac OS.

1.4.1 Be PowerPC native

Native or FAT applications are first class citizens on Mac OS 8 since the
operating system is almost entirely native. During the rewrite of the
system, performance choices were made to favor the PowerPC based
application.

If you have accelerated applications but portions of your application are
still 68k code, consider porting those portions to PowerPC as well. Portions
of your applications which were not performance sensitive on System 7.x
may be more noticeable on Mac OS 8.

In addition, new API introduced in Mac OS 8 will not have A-traps
associated with them, and so, will not be accessible to 68k code.

1.4.2 Use GX printing

While traditional printing calls are supported for backward compatibility,
the printing implementation for Mac OS 8 is PowerPC native QuickDraw
GX. This means that your application will print faster and more reliably if
you support the QuickDraw GX printing API. Support for both GX and
traditional printing can be maintained by runtime Gestalt checks.

1.4.3 Use Open Transport

The PowerPC networking implementation for Mac OS 8 is PowerPC native
Open Transport. The traditional AppleTalk and MacTCP APIs are still
supported for backward compatibility. However, optimal networking
performance is only available by adopting Open Transport.

1.4.4 Use LowMem accessors

With the advent of the Power Macintosh, new calls were added to provide
access to supported low-memory locations. By migrating to the LMGet/
LMSet accessor functions today, you can be assured that you aren’t relying
on any undocumented low-memory globals. The existing LMGet/LMSet

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

calls will eventually be migrated to the individual owner components,
where they’ll be made into full-fledged API calls, and their connection with
low memory will be broken. Note that for Mac OS 8, the LMGet/LMSet
calls still do access the global low-memory area.

1.4.5 Use the latest Universal Interfaces

The universal interfaces (available with some development tools, MPW Pro
and develop CDs) will have Mac OS 8 features conditionally added. These
interfaces will give an indication of how certain features will (or will not)
be supported.

1.4.6 Support only System 7 and later.

In our compatibility labs, we have encountered obsolete code buried in
PowerPC native applications. For example, code that checks for Color
QuickDraw or does not use the FSSpec based File Manager calls is no
longer necessary.

1.4.7 Minimize patching

A well-written PowerPC-native application should not have to patch any
traps. Relying on undocumented side effects may cause your application to
break unexpectedly with any new system software release.

1.4.8 Factor your application

Separating your application into distinct parts has several advantages under
Mac OS 8. Even in System 7.x, separating your application into a user-
interaction portion and a “back-end” is a necessary step to making your
application scriptable. Furthermore, in Mac OS 8, you will be able to take
advantage of tasking (See the Mac OS 8 Transitional Application
document or Mac OS 8 Only Application document).

1.4.9 Use standard definition procedures

In Mac OS 8, any number of user-selectable themes can be chosen. The
appearance of windows, menus, and controls can vary dramatically from
theme to theme. Custom definition procedures will look the same no matter
which theme the user selects. If you must use them, give the user the option
of turning them off to revert to the selected appearance.

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

1.4.10 Be VM friendly

There is no way to turn virtual memory off on Mac OS 8. If you have your
own memory management system and/or have been telling users of your
application to "Turn Virtual Memory off", you will probably have to do
some performance tuning to achieve optimal performance on Mac OS 8.
You can start to do this work by getting your application to a) run
acceptably on System 7.x with virtual memory turned on; and b) not use
System 7.x Virtual Memory calls. The virtual memory (paging)
performance of your application will improve on Mac OS 8.

1.4.11 Locate special folders using Folder Manager

Use FindFolder, which has been available since System 7, to locate the
System Folder, Preferences folder, Extensions folder, and other system-
created folders. In addition, all user-specific preference information should
be stored in the Preferences folder. By using FindFolder, and correctly
storing your preferences, you’ll be compatible with the workspaces
mechanism in Mac OS 8, which allows different system users to have their
own sets of application settings.

1.4.12 Specify stack size in code fragment resource

If your application needs additional stack space above and beyond the
default stack size, it should use the application stack size field provided in
the code fragment ('cfrg') resource. Calls to GetApplLimit and
SetApplLimit have no effect on PowerPC-native applications in Mac OS 8.

1.4.13 Be WorldScript savvy

Don't assume text is in a single script. Don't assume a one-to-one
relationship between characters and displayed glyphs: always use text
measuring routines on entire runs of text instead of character by character.
Similarly, use PixelToChar() and CharToPixel() for hit testing and
highlighting. Use GetFormatOrder() to properly reorder mixed-
direction text.

1.4.14 Be Inline input aware

Inside Macintosh: Text chapter 7 details what an application needs to do to
become inline input aware. This enables input methods to work directly in
the document content without putting up a secondary window. In
Mac OS 8, inline input aware applications will have access "for free" to a

Mac OS 8 Compatible Application WWDC 1996

Mac OS 8 Compatible Application WWDC 1996

wide range of services besides input methods which use the same protocol
(e.g. spelling checker, hyphenators).

1.5 How To Build a Mac OS 8 Compatible Application

While you can start to build a Mac OS 8 Compatible application on System
7.x with the latest Universal Interfaces, you probably want to use the
interfaces and libraries on the Mac OS 8 Developers Release:
Compatibility Edition CD. This release will provide helpful feedback
while you are compiling, linking and running your application.

Interfaces The Mac OS 8 version of the interfaces, like all Apple interfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developers Release:
Compatibility Edition CD will include the latest version of our interfaces.

Libraries In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your application against. These libraries correspond to the
different types of products you might build. They allow you to link against
one library without having to know what specific library the service (and
symbol) in question came from.

Compiling Your
Application

To link a Mac OS 8 Compatible application, use the
BUILDING_FOR_SYSTEM7_AND_SYSTEM8 compiler flag to indicate
to the system that you are building an application which runs on both
System 7.x and Mac OS 8.

Linking Your
Application

To link a Mac OS 8 Compatible application, use the
AppSystem7orMacOS8.stubs library in your development
environment. Linking against this library ensures that you will not import
facilities which are not available on Mac OS 8.

Running Your
Application

When running your application against the debug version of the system
release (on the Mac OS 8 Developers Release: Compatibility Edition),
you may encounter debugger breaks which detect unsupported or
discouraged usage patterns. This will help you determine how well your
application will run.

